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Abstract—By using Henstock-Kurzweil integral, the 

uniqueness theorems of bounded variation solutions for measure 

functional differential equations with infinite delay are 

established. This result generalizes theorem concerning 

uniqueness in Lebesgue integral setting to a Henstock -Kurzweil 

integral setting. 

 
Index Terms—measure functional differential equations with 

infinite delay; Henstock-Kurzweil integral; bounded variation 

solution; uniqueness.  

I. INTRODUCTION 

  The Henstock-Kurzweil integral encompasses the Riemann 

and Lebesgue integrals [1]. the integral was introduced by 

Henstock and Kurzweil independently in 1957-1958 and was 

proved useful in the study of ordinary differential equations 

(see [2]). 

Measure functional differential equations with infinite delay 

have the form  

       

 
0

0

0

, ,
(1)

,

t

s
t

x t x t f x s dg s

x t 

  

 


         

which have been introduced in the paper [3] by slavík, where 

x  is an unknown function with values in 
nR and the symbol  

sx denotes the function    sx x s   defined on 

 ,0r , 0r   being a fixed number corresponding to the 

length of  the delay.  The integral on the right-hand side of (1) 

is the Kurzweil-Stieltjes integral with respect to a 

nondecreasing  function .g  we consider that the integrands 

f  is Henstock-Kurzweil integrable and   is a regulated 

function. 

Let   , , nG a b R  be  the  space  of   regulated  functions 

 : , nx a b R , that is, the lateral limits 
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exist and  are  finite.   , , nG a b R  which is  a Banach 
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space   when  endowed  with  the norm  sup
a t b

t 
 

   

for   all    , , nG a b R  .  Also,  any  function  in 

  , , nG a b R  is the uniform limit of  step functions.        

Define 

     , , , , :n nG a b R u G a b R u   is left 

continuous at every  , .t a b  

In   , , nG a b R
, we consider the norm induced by 

  , , nG a b R
. We  denote  by   , , nBV a b R  the 

space of functions  : , nx a b R which are of  bounded 

variation. In   , , nBV a b R , we consider the variation 

norm given by   ,b

aBV
x x a Var x   where 

b

aVar x  

Stands for the variation of x in the interval  ,a b . Then 

   , , ,n

BV
BV a b R  is a Banach space and  ,BV a  

 , nb R   , , .nG a b R When   , , nx BV a b R  

is also left continuous, we write   , , nx BV a b R . 

   It is clear that for a function   0, ,x G t     

 ,nR we have   ,0 , n

tx G r R   for all  0 0,t t t  

.  

     Let   0, , nx G t R    with the following 

property: if    0, ,x x t t t     , is an element of 

1G  and  0, ,t t    then x  given by 
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Also belongs to 1G .  

    Let   1 ,0 , nH G r R   be such that  

  0 0 1 1, ,tx t t t x G H    . 

   The existence of bounded variation solutions for measure 

functional differential equation with infinite delay were 

obtained in [4]. On this basis, the uniqueness of  bounded 

variation solutions for measure functional differential equation 
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with infinite delay is discussed in this paper. 

 

II. PRELIMINARIES 

Let  ,a b  be a compact interval in R and   be a norm in 

nR . 

Let     be a positive function on  ,a b , i.e. 

   : ,a b R   .We say    1
1

, ,
m

i i i
i

D t t 


  is 

  fine of  ,a b  if    1, ,i i i i i it t          

 i   for all 1, 2, ,i n . 

Definition.1
[1] 

A function  : , nu a b R is said to be 

Henstock-Kurzweil integrable on  ,a b if there exists an 

nI R  such that for every 0,  there exists 

   : ,a b R   such that for every   fine partition 

   1
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 , we have 
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   . 

We denote the Henstock-Kurzweil integral (also write as H- 

K integral) I by (H-K)   .
b

a
u s ds    

Definition.2
[4] 

Assume    1 0 0, : , n

tf x t H t t R   satisfy the 

following conditions: 

(A) Then exists a positive function    0 0: ,t t     

R
 such  that for every  ,u v  satisfy   ,u v      

     0 0, , +t t        and 1,x G  we have 

          , .f x g v g u h v h u      

(B) For every  ,u v  satisfy   ,u v      ,      

    0 0, +t t   and 1, ,x y G  we have  

        , ,f x f y g v g u      

      ,x y h v h u     

where  0 0: ,h t t R   is a nondecreasing function and 

continuous the left.  : 0, R    is a continuous and 

increasing function with    0 0, 0r    for 0.r    

Definition.3
[4] 

    Let  1 0 0,H t t     be open. Assume that 

function : nf R is a Caratheodory function and belongs 

to the class  , , ,W h   if f  satisfys the condition (A), 

(B). 

Lemma.1
[5] 

   Assume that    : , 0,a b   is a bounded function 

on  ,a b ,    : , 0,h a b    is a nondecreasing 

function and continuous from the left on the interval  ,a b ,  

 : 0,+ R    is a continuous and increasing function 

with    0 0, 0r    for 0r  . Assume 
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1u

u
F u dr

r
  ,                      (2) 

for 0,u   where 0 0.u    : 0,F R   is a increasing 

function,  0 0F u   and  
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Assume the inequality 

      
a

k t dh t


       

holds for  , ,a b  where k  is a constant and 0.k   

    If       ,F k h b h a     then the inequality 

       1F F k h h a       (3) 

holds for  , ,a b  where  1 : ,F R   is the inverse 

function to F  form (2). 

III. PRIME RESULT 

Definition.1 

A bounded variation solution  0: , nx t R    

of (1) is said to be locally unique for increasing values of t  if 

for any solution  0: , ny t R   , 0   of (1) with 

0 0t ty x    there exists 1 0   such that    x t y t  

for      0 0 0 1, , , .t t t t           

Theorem.1 

     Assume that  , , ,f W h   where h  is a function 

and continuous from the left, :   0, R   is a 

continuous and increasing function with  0 0  , 

  0r   for 0,r   and for 0u  , we have 

 0

1
lim

u

vv
dr

r 
  .          (4) 

Then every bounded variation solution  x x t  with 

0t
x   of (1) is locally unique for increasing values of t ,  

 0 ,t   . 

    Proof Assume that  0, : , nx y t R    are two 

bounded variation solution of (1) with 
0 0t tx y   , where 

0  . Then 
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For arbitrary 0   there exists a positive function 

   0: ,t t R   , such that for any    -fine partition 
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 . By Definition 1 and condition (B), 

we have 
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By (5)-(7), we get 
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Where 00 t t   . 

According to [5], we obtain 
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where  0 0,t t t    . 

For given 0 0u  , set  
 0

1u

u
F u dr

r
  . Then the 

imequality 

          1

0x t y t F FA h t h t       

holds, where 

 0 0,t t t    ,       0F A h t h t      , 

 lim
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    Obviously, we have 
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and for 
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Therefore there exists 0 0   such that for  00,   the 

inequality       0 0F A h t h t        holds, 

and we get 
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According the definition of function F , for 

 0 0,t t t     and  00,  ,we have 
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If     0x t y t k     for some  0 0,t t t   , 

then for  00,   such that 0t t   , we have 
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1k
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dr h t h t
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thus 

  
   0 0

0

1
lim

k
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      , 

this is in contradiction with the function  , so 

    0x t y t   for all  0 0,t t t   . Therefore, the 

theorem is proved. 

Corollary.1 



     Uniqueness of Bounded Variation Solutions for Measure Functional Differential Equations with Infinite Delay                                                           

                                                                                              29                                                                     www.ijeas.org 

 

If  , ,f W h   , where  r Lr  , 0r  , 0L  , 

then the bounded variation solution of (1) which satisfies 

 0 ,t    is locally unique for increasing values of t . 

Proof  For 0u  , obviously 

 0 0

1 1
lim lim ln

u

vv v

u
dr

r L v  
   , 

the conditions of theorem 3.1 are satisfied, then the 

corollary holds. 
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